电炉变压器
电炉变压器变压器 的供应商是供给电炉电源电源 的供应商的变压器,它能将较高的电压转换为较低的适合电炉用的电压,被广泛应用于冶金行业,有炼钢电炉用、矿热炉用,电弧炉用、电阻电阻 的供应商炉用、盐浴炉用、单相石墨化炉用、工频感应炉用和电渣重熔电炉变压器等。
结构特点
电炉变压器的铁芯采用优质取向硅钢片,全自动剪切线加工,45度全斜接缝、不冲孔、无纬玻璃粘带绑扎工艺制造。线圈采用国际较新主纵绝缘结构,合理选择绕组的结构和绝缘,保证绕组有足够的机械强度。具有承受短路能力强、过载能力强、效率高、低损耗、安全、可靠等特点。
工作原理
电炉变压器是炼钢电弧炉的电源变压器,电炉变压器容量根据电弧炉大小及冶炼工艺配置。它通过调压方式满足冶炼工艺的要求。调压方式分为有载调压和无励磁调压两种。有载调压的大型电炉变压器不带串联电抗器,无励磁调压的中小型电炉变压器其结构形式可分为带串联电抗器的和不带电抗器的两种,这两种结构能在较高两次电压下改变阻抗。前者靠串联电抗器的投入和切除来改变阻抗。而后者则靠改变电炉变压器自身高压绕组的联结方式来改变绕组阻抗。
壳式电炉变压器
结构特点
1、铁心
壳式电炉变压器的铁心为全斜接缝的框形结构。其铁心宽度窄,散热条件好,结构简单。
2、绕组
壳式电炉变压器的绕组为与心柱截面形状相同的矩形。低压绕组用整块铜板制造,散热条件好,出头为焊接结构;高压绕组为饼式结构。绕组排列一律采用交错式。每组内的高压线段与低压线段应具有相等的磁势,其辐向尺寸应基本相等。理论上将低压线段放在两端,因其对铁心的绝缘距离小。但是为了使变压器短路阻抗小些,需要多个漏磁组才能达到要求,而低压线段放在两端会使漏磁组数受到限制,所以有时将高压线段放在两端。在调压过程中,为了使线段配置得对称并保证磁势平衡,调压线段通常采用多路并联,从而保证各漏磁组阻抗相等,各路低压线段的电流也相等。
3、冷却方式
壳式电炉变压器一般采用强迫油导向循环、强迫水冷却或强迫油导向循环、强迫风冷的冷却方式。由于壳式变压器在油箱和器身之间可以方便地设置隔板,使冷却后的变压器油强迫从线饼间流过,油流均匀、各部分温差小、散热效果好,可使较热点温度降低5℃左右,增加变压器的额外过载能力。
4、油箱
由于壳式变压器的绕组完全被铁心所屏蔽,受外力作用而损伤的可能性较小,所以可根据器身形状,采用适合形状的油箱,从而使变压器的尺寸和重量大大减少。
优点
1、机械力小、强度好
理论计算表明,壳式变压器的辐向电磁力是很小的。轴向电磁力虽然比较大,但当漏磁组较多时,也能使其明显降低。壳式变压器的绕组完全被绝缘件所包围,铁心又包围它们,铁心与油箱用木撑条卡紧,整个器身紧固牢靠。短路力通过绝缘件、铁心直接传至油箱,不像心式结构的绕组支撑面少,所以,壳式变压器的机械强度高。
2、绕组耐冲击性能强
由于壳式变压器绕组的线饼少,而且辐向尺寸大,因此线饼间电容较大,而对地电容却很小,所以当冲击电压作用到壳式变压器上时,起始电压基本为线性分布,电压梯度大为减少。同时由于壳式变压器的固有电容较大,使得绕组电压振荡的时间加长,暂态电压在绕组达到幅值之前就已经衰减,因此,壳式变压器绕组具有很好的耐受过电压冲击的性能。
3、阻抗低
壳式变压器的每一相可分成若干个漏磁组,且线饼辐向尺寸大,阻抗可设计为2%一3%,其机械力和负载损耗亦小。由于变压器无功功率大为减少,电炉功率因数自然增加。
4、分相调压对磁路没有影响
由于分相调压的三相磁通不对称,所以心式变压器必须采用五柱铁心。但在壳式变压器铁心中,每一相已经有一个独立磁路,磁路的不对称不影响铁心的设计。
5、引线短且易于阻抗平衡
线端出线及分接线都在绕组上部尽可能短地引出,低压绕组出头可以采用相同的长度,从而消除低压引线的阻抗不平衡,减少了电炉作业时的功率转移。
6、损耗低
工程上,负载损耗中附加损耗所占的比例,在一定程度上反映了变压器的技术性能和经济性能。壳式变压器的附加损耗较同规格的心式变压器小,主要因为以下几点。
(1)壳式变压器的绕组采用多漏磁组数的结构。漏磁组数灵活多变是壳式变压器的主要特点之一。当变压器的单台容量增大时,漏磁组数也同时增多,但是每个漏磁组的容量并不增大,则漏磁通密度、变压器轴向短路力和附加损耗比值不增大,不会出现局部过热的现象。
(2)壳式变压器矩形绕组的长边处于铁心包围之中,外露绕组漏磁扩散空间小,因此,附加损耗减小。
(3)由于绕组被铁心包围,有一定的屏蔽作用,油箱的杂散损耗减小了。这样,壳式变压器的总损耗就降低了。